

PSCAD™

Automation Library (PSCAD v4.6.1)

August 20, 2018

Revision 1

Contents

1. GENERAL .. 1

2. PSCAD PYTHON FUNCTION CALLS IN THE AUTOMATION LIBRARY ... 1

2.1 BASICS .. 1
2.2 SYSTEM DEPENDENCIES ... 1
2.3 AUTOMATION CONTROLLER .. 3
2.4 APPLICATION CONTROLLER ... 4
2.5 PROJECT CONTROLLER ... 5
2.6 CANVAS CONTROLLER .. 6
2.7 COMPONENT COMMAND FUNCTIONS.. 7
2.8 FILE UTILITY FUNCTIONS ... 8
2.9 MICROSOFT WORD UTILITY FUNCTIONS... 9
2.10 PYTHON RECIPES – MICROSOFT EXCEL .. 10

 Page 1

1. General

This is a reference used to describe the PSCAD Python function calls that are available in the Automation Library.
This document will be continuously updated as functions are added.

This document is intended for users of PSCAD v4.6.1.

2. PSCAD Python Function Calls in the Automation Library

2.1 Basics

PSCAD is a highly structure environment. By design the control and function of the software is organized in a series
of access object that are organized in a hierarchy. Each object provides functionality at an increasing level of detail.
To manipulate the details at lower levels, the strategy is to access individual controllers that are specifically
tailored for that level of detail. Using abstraction as a natural part of the language, these controllers can be
manipulated with relative ease.

This document outlines the controller function starting with the highest level types and working its way down the
lowest and most detailed types. Each controller has relatively few methods so that they may be easy to use.

2.2 System Dependencies

Standard Operating System parameters and functions
This module provides a portable way of using operating system dependent functionality.
(https://docs.python.org/2/library/os.html)

Standard System-specific parameters and functions
This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. (https://docs.python.org/2/library/sys.html)

Standard Logging parameters and functions
This module defines functions and classes which implement a flexible event logging system for applications and
libraries. (https://docs.python.org/2/library/logging.html)

Define a path to the PSCAD Automation library
This will allow this script to import classes and functions from the Automation library.

import os

import sys

import logging

sys.path.append(r"C:\Program Files (x86)\AutomatedTestSuite")

https://docs.python.org/2/library/os.html
https://docs.python.org/2/library/sys.html
https://docs.python.org/2/library/logging.html

 Page 2

Import the Controller functions
From the Automation library, this is the controller that is used to launch PSCAD.

Import the win32com.client functions
The modules in this package allow for dynamic usage of COM clients by Python scripts.

Import the shutil functions
The shutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal. (https://docs.python.org/2/library/shutil.html)

Import Dispatch function/generate the cache list of available COM commands
The Dispatch function will allow you to open any program installed on the windows operating system that has a
COM interface. Such programs include MS Excel, Word, and Outlook.

Import custom Microsoft Word utility
The Word utility is a special collecting of functions that can be used to interact with Microsoft Word.

Import custom File utility
The File utility is a special collection of functions that can be used to easily manipulate files.

Import custom Mail utility
The Mail utility allows you to send emails using Outlook or other web based emails.

import automation.controller

import win32com.client

import shutil

from win32com.client.gencache import EnsureDispatch as Dispatch

from automation.utilities.word import Word

from automation.utilities.file import File

from automation.utilities.mail import Mail

https://docs.python.org/2/library/shutil.html

 Page 3

2.3 Automation Controller

Note
Versions of installed PSCAD and FORTRAN compilers can be found in a log file:

C:\Users\Public\Documents\Manitoba HVDC Research Centre\ATS\ProductList.xml

The Automation Controller is used to launch the application or perform other high level functions. To access the
functionality get the controller object through an access method. The left hand side (LHS) reference will provide
access to the controller methods.

Application command functions are the top level of commands that operate on the core functions. There are only
a few commands in this set as it is used primarily for starting, loading and terminating the application. These
commands are embedded in the automation controller module itself.

Launch

The application can be launched using the automation controller. In this case we have instructed the
application to silence all dialogue boxes. The object returned is then used to provide application control
from that point forward.

Arguments:
Product = product identity string
Options = command line options

controller = automation.controller.Controller()

pscad = controller.launch("PSCAD 4.6 (x64)", options={'silence': True})

 Page 4

2.4 Application Controller

Once an application controller is established

Quit
The application can be shut down using the quit command.

Set the compiler
You can set the compiler to any installed FORTRAN compiler.

Arguments: TODO

Load

Access Project Controller
Get a handle to any project, for example “test”.

Simulation sets

Run all simulation sets
You can run all of the simulation sets by calling this one command.

Navigation

Navigate up
This command will mimic the navigate up command.

pscad.quit()

pscad.settings(cl_use_advanced='true', fortran_version='GFortran 4.6.2')

 pscad.load([r"C:\test\project.pscx"])

 project = project("test")

 pscad.run_all_simulation_sets()

pscad.navigate_up()

 Page 5

2.5 Project Controller

Project Focus
Put project in focus, this is like selecting a project.

Project Run
This command is used to run a project.

Layers enable/disable
You can specify a layer and enable/disable it.

Get Canvas
Get a handle to any canvas, for example “Main”.

project.focus()

project.run()

project.set_layer('Harmonic_Impedance', 'enabled')

 main

 Page 6

2.6 Canvas Controller

Get Component
Get a handle to any user component by using the component ID. You get the ID of any component by right clicking
and reading its attributes

Get Transmission Line
Get a handle to any transmission line by using the component ID, exactly like getting User Components. In the
example script we are getting a transmission line with the ID = 1935965525.

Get Cable
Get a handle to any cable by using the component ID, exactly like getting User Components. In the example script
we are getting a transmission line with the ID = 1935965525.

Select canvas components
Create a selection of components; this mimics a box selection using a mouse. You must first get the canvas
coordinates that define a box region. The coordinates are displayed and change when you move your mouse
around the canvas region.

user_cmp(1701378181)

tline(1935965525)

cable(1935965525)

select_components(x1=1425,y1=634,x2=2394,y2=1240)

 Page 7

Copy selection as Metafile
This command tells PSCAD to copy the current selection of components as a Metafile and send the image to the
Windows clipboard.

Copy selection as Bitmap
This command tells PSCAD to copy the current selection of components as a Bitmap and send the image to the
Windows clipboard.

Clear Selection
This command clears any selected components. This mimics the action of a single click on the canvas.

2.7 Component command functions

Set the parameters of any component
You can set the parameters of a user component by first determining what the parameter variable is. Simply open
the parameters of the component and click on the field you want to change; the variable name will appear below.
You can modify more than 1 parameter at the same time by separating them with a comma in the set_parameters
call.

Navigate into page module
This function will navigate into a page module.

copy_as_metafile()

copy_as_bitmap()

clear_selection()

set_parameters(R=0.5)

 navigate_in()

 Page 8

2.8 File utility functions

New folder
Create a new folder at a specified path.

Move Files
Move files with specific files extensions from a source folder to a destination folder. In the example snippet, we are
moving all files of type .out and .inf.

Convert files from .out to .csv
This custom function will convert a given PSCAD.out file to a comma separated variable .csv.

In the example we are taking a file called Harm.out located in some folder and creating a new csv file called
Harm.csv

os.mkdir(r"C:\testing\output_folder")

File.move_files(r"C:\testing\project.gf46", r"C:\testing\output_folder", ".out", ".inf")

File.convert_out_to_csv(src_folder, "Harm.out", "Harm.csv")

 Page 9

2.9 Microsoft Word utility functions

Open Microsoft Word
This function starts Word with a default state with no document.

New document
This function will add a new document to Word.

Add text
This function will add the specified text and allow you to change font size and specify whether or not the text is
bold.

Add page break
This function will add a page break, essentially starting a new page.

Paste from Windows clipboard
This function will paste anything from the Windows Clipboard into Word.

Word()

 new_document()

textParagraph("some text", 20, True)

addPageBreak()

pasteImage()

 Page 10

2.10 Python Recipes – Microsoft Excel

Open Microsoft Excel
This function starts Excel with a default state with no sheet

Make Excel visible
This function starts Excel with a default state with no sheet.

Open a file
This function will load a file into Excel. A full path must be specified.

Get a specific workbook
This function will retrieve a workbook. All workbooks are indexed as you add them. This example gets the first one.

Get a specific worksheet
This function will retrieve a worksheet. All worksheets are indexed as you add them. This example gets the first
one.

Get a specific column
This function will retrieve a column. All columns are indexed as you add them. This example gets the first one.

Select all rows of a column
This function will select all rows of a specific column.

Add a chart to a specific workbook
This function will use a workbook object and add a chart to it.

Dispatch("Excel.Application")

 Visible = True

Workbooks.Open(r'C:\test\Harm.csv')

Workbooks(1)

Sheets(1)

Columns(1)

Select()

workbook.Charts.Add()

 Page 11

Get a specific chart
This function will retrieve a chart. All charts are indexed as you add them. This example gets the first one.

This is how you change chart types in Excel. A list of types can be found here:
https://msdn.microsoft.com/en-us/library/office/ff837417.aspx

Activate a specific worksheet
This is how you select or bring a specific worksheet into the main view of Excel.

chart = workbook.Charts(1)

chart.ChartType = win32com.client.constants.xlXYScatter

workbook.Sheets("worksheet name").Activate()

https://msdn.microsoft.com/en-us/library/office/ff837417.aspx

 Page 12

DOCUMENT TRACKING

Rev. Description Date

0 Initial

1 Updated to new branding guidelines 20/Aug/2018

Copyright © 2018 Manitoba Hydro International. All Rights Reserved.

