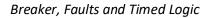


Breaker, Faults and Timed Logic

For PSCAD Version v5.0

January 30, 2020 Initial


Powered by Manitoba Hydro International Ltd. 211 Commerce Drive Winnipeg, Manitoba R3P 1A3 Canada mhi.ca

CONTENTS

PSCAD/ EMTDC EXAMPLE DESCRIPTION		
1.1.	Example 1: Initial State	1
1.2.	Example 2: Impact of Number of Breaker Operations	2
1.3.	Example 3: Impact of Pre-Insertion Resistance Time Delay for Closing Breaker and Time	
	Delay for Bypassing Pre-Insertion Resistance	3
1.4.	Example 4: Impact of Time to Apply Fault and Duration of Fault	5
1.5.	Example 5: Fault Type Control	6
1.6.	Example 6: Determine the maximum transient fault current using Multiple Run	7
1.7.	Example 7: Change fault time, fault type, fault location and fault impedance using	
	MULTIPLE-RUN	8
	 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 	 Example 1: Initial State

1. PSCAD/ EMTDC EXAMPLE DESCRIPTION

1.1. Example 1: Initial State

Example 1: demonstrate impact of initial state by choosing Open or Close.

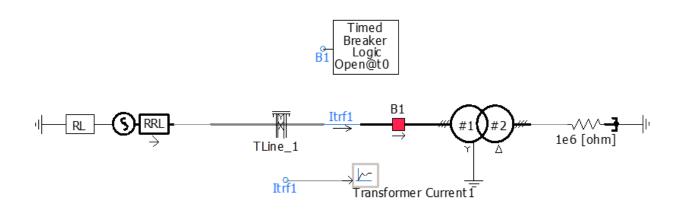


Figure 1: Application of Breaker and Timed Breaker Logic

This example illustrates how the initial breaker status can impact the transformer inrush current. Figure 2 demonstrates the transformer's inrush current when energizing at 0.5 s.

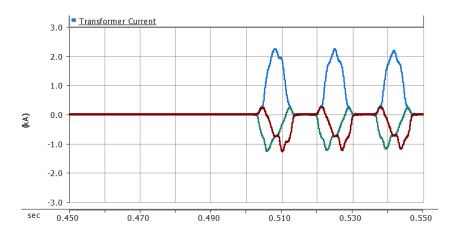


Figure 2: Transformer's current after energizing

1.2. Example 2: Impact of Number of Breaker Operations

The number of breaker operations allows the breaker to operate twice at the specified time. <u>Figure 3</u> illustrates the impact of multiple breaker operation on the transformer's current as follows,

- Breaker is initially open
- At t = 0.5s, the breaker is closed.
- At t = 0.8s, the breaker is opened.

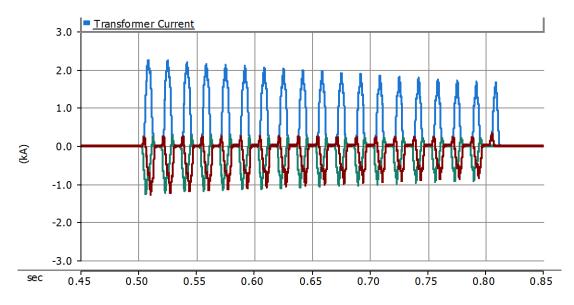


Figure 3: Transformer's Current

1.3. Example 3: Impact of Pre-Insertion Resistance Time Delay for Closing Breaker and Time Delay for Bypassing Pre-Insertion Resistance

A pre-insertion resistance may be represented if required. If this option is selected, the pre-insertion resistance is inserted following the ON (close) signal and a specified time delay for Closing Breaker. Pre-insertion resistance is removed after the delay specified by "Time Delay" for Bypassing Pre-Insertion. Both these times are counted from the instant when the control signal changes from 1 (open) to 0 (close).

When an OFF (open) signal is received, the breaker will open and the pre-insertion resistance will be inserted instantaneously, or at the next current zero, depending on the configuration. Pre-insertion resistance will be removed at the following current zero.

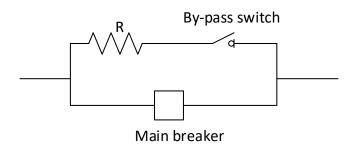
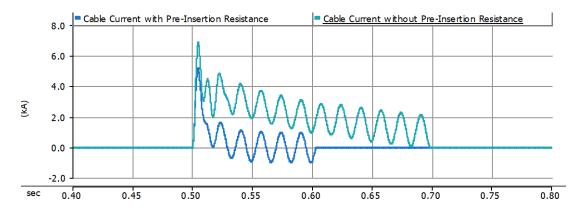



Figure 4: PSCAD/EMTDC implementation of pre-insertion resistance

Figure 5 indicates the impact of pre-insertion resistance when energizing a compensated cable.

Figure 5: Cable's current with and without pre-insertion resistance

The time delay for closing breaker (Tdelay1) is used to delay the closing time as specified by the user as shown in <u>Figure 6</u>.

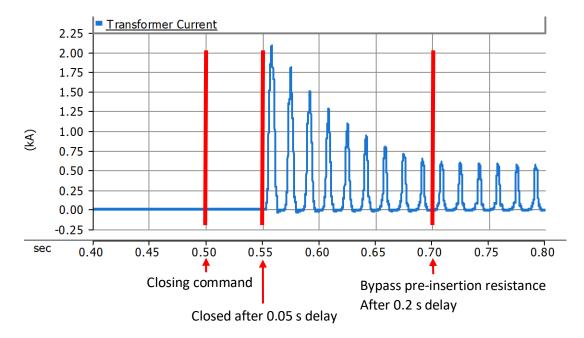


Figure 6: Current Waveform when Time Delay for Closing Breaker is 0.05s and bypass pre-insertion resistance is at 0.2s respectively

$|| RL \bigcirc RRL \longrightarrow TLine_1$ $|| RL \bigcirc RRL \longrightarrow TLine_1$ || I.0e6 [ohm] || I.0e6 [ohm] || I.0e6 [ohm]

1.4. Example 4: Impact of Time to Apply Fault and Duration of Fault

Figure 7: Simple Application of Internal Fault Control and Timed Fault Logic

This example illustrates how to set the time and duration of the fault. Figure 8 shows the 1-phase fault current. A solid 1-phase to ground fault was applied at 0.5 s for a duration of 0.2 s.

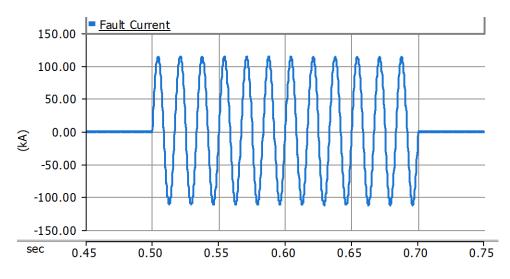


Figure 8: The fault current during a solid 1-phase to ground fault

1.5. Example 5: Fault Type Control

The "fault type control" option allows user to select the type of faults to be either internal or external as shown in <u>Figure 9</u>. <u>Figure 10</u> compares the fault current for a single phase to ground fault both using internal and external option.

	Three Phase Fault		×	
Fault Type			~	
🗒 21 🗃 📑 🐖 🕸				
~	General			
	Is Phase A in Fault?	Yes		
	Is Phase B in Fault?	No		
	Is Phase C in Fault?	No		
	Is this Fault to Neutral?	Yes		

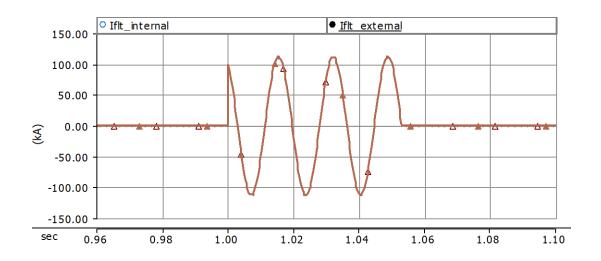


Figure 9: Fault Type Control

1.6. Example 6: Determine the maximum transient fault current using Multiple Run

This example demonstrates how to setup a PSCAD/EMTDC case to capture the worst case mid-line fault current using the multiple-run component.

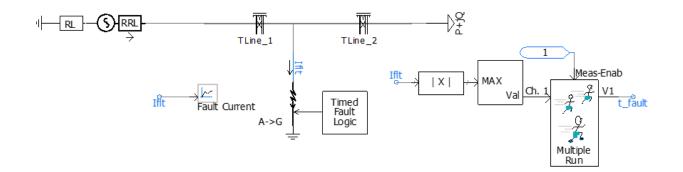


Figure 11: Application of Faults and Multiple Run

🔛 Timed Fault Logic			\times	
Configuration			~	
🗎 21 🗃 📑 ᄳ 🔊				
~	General			
	Time to Apply Fault	t_fault		
	Duration of Fault	0.2 [s]		

Figure 12: Timed Fault Logic Configuration

1.7. Example 7: Change fault time, fault type, fault location and fault impedance using multiple-run

This example demonstrates how to automatically control fault time, fault type, fault location and fault impedance using multiple-run.

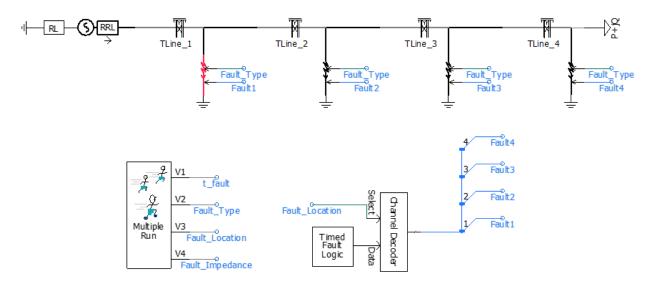


Figure 13: Application of Automated Control

DOCUMENT TRACKING

Rev.	Description	Date
0	Initial	30/Jan/2020

Copyright © 2020 Manitoba Hydro International Ltd. All Rights Reserved.