

Field and Corona Effects

2018 FACE Presentation Oct. 31, 2018

.... 00 000000 00000 000000 00 ŏ

pscad.com

Welcome to FACE

Introduction

1. FACE (Field and Corona Effects) Basics

- 1. What is FACE
- 2. FACE History
- 3. Salient Features
- 4. Application Areas
- 2. User-Friendly and Intuitive GUI
- 3. Examples & Validations
- 4. Questions & Answers

1. FACE Basics: FACE ?

- Field and Corona performance is an important consideration when designing & operating HV lines
- Evaluates the overall environmental effects of HV AC, DC, or AC/DC hybrid power lines, namely
 - -AN
 - RI
 - Corona Loss
 - Static electric and magnetic fields
 - Ion fields, ion currents, ion charges
- Produces Lateral profiles specified by users

1. FACE Basics: FACE History

- FACE Development was initiated at MH Hydro in early 1980s',
- FACE Development & validations were continued at MHI (HVDC Research Centre) from 1987 – 1995,
- Significant improvements, 04/2006-07/2007,
 - RI, advanced computation method
 - Highly Efficient ionized field computation
- User friendly and intuitive GUI, 2016-now,
- Evolved to a commercial product.

1. FACE Basics: FACE Features

- Predicts the field and corona performance of AC, DC, or AC/DC hybrid power lines,
- Employed a higher-order successive image method for the field computation
 - & Subconductors as separate conductors internally,
- Implemented Generation Functions developed by EPRI, BPA, EDF, IREQ ... for user's selections through GUI,
- Most advanced RI computation: semi- analytical method, frequency domain model transform technique.
- Highly efficient solution method for ionized fields
- Asymmetrical bundles can be handled easily

1. FACE Basics: Application Areas

- Existing transmission line studies, and monitoring
- AC, DC, or DC/AC transmission lines design
- Converting AC to DC and Vice Versa

2. FACE GUI

Tield and Corona Effects								- 0	×
File Edit Run Plot Window	Help						Licens	ing Log Out (igeo	orgei)
🗄 🖬 🛃 🈏 🅐 🛠 🖌 🕨 🔳 🁌	6 🗈 🛍 🗙 • •• •• ·								
Workspace	ų ×	Tower Geometry	- ×	Circuit Data	Plotting				- ×
Examples		-		Surface Gradient	AN CL	AC Fields M	anatic Fielde R	DC Fielde	
					AN CE	ACTICIDS IN		De Holda	
⊡Y Circuit 1		100				Conductor Su	rface Gradients [k	V/cm]	
			• •	Circuit ID	Bundle #	Position [x y] (f	i) Avg.	Avg. Max	
G1		-	• •	1	1	[-46.59 35.01]	16.47	17.86	
		50		1	2	[-18.60 35.01]	16.88	18.31	
		•	• • •	1	3	[-18.60 73.00]	16.28	17.66	
Case Brenetty				2	1	[46.59 35.01]	16.47	17.87	
	¥ ^	0 Altitude: 0 ft		2	2	[18.60 73.00]	16.29	17.67	
✓ Case	^	Ground Resi	stivity: 1640.41995 Ω-ft und Permophility: 1	2	3	[18.60 35.01]	16.40	17.83	
Case name	ACepri1		and Penneability. 1						
Unit System	IMPERIAL								
✓ General		-50	0 50						
AC frequency (Hz)	60			<pre>\</pre>					>
Altitude (ft)	0	Rundle Geometry		Rundle Data					- ~
Conductor smoothness factor	NaN	Dundle Geometry	• ^	- Dundie Data					• ^
Mobility of ions (ft²/kV·s)	1.6145865674148014			Subconductor	Symmetrical	Spacing	Diameter (in)	DC Resistance	
Onset gradient (kV/cm)	14	-			(in)			(Ω/mi)	
Solving Ionized Fields?	False	_		1	18.0	1.52	5	53.1083520000000	04
Using onset gradient?	True			2	18.0	1.52	5	53 1083520000000	04
✓ Ground System	1010 11005	0	•	-			-	1	
Earth resistivity (Ω1t)	1640.41995			1					
Relative ground permeability	1								
✓ Plotting AN	~			1					
AC frequency (Hz) Steady state frequency of AC system (Hz).		-1	0 1						
Output									ųΧ
Computing Radio Interferences AC: BPA Completed!									^
Computing Static Electric Fields Completed!									
Computing Magnetic Fields									~
Ready									.::

2. FACE GUI: Workspace Window

• Workspace- users can define multiple projects

Tield and Corona Effects												- 0	×
File Edit Run Plot Window	Help										Licensi	ng Log Out (ig	eorgei)
	. 🗈 🙉 🗙 🖌	$\Delta < 2$.	::.:06		000								-
Workspace	# ×	Tower	Geometry		- ×	Circuit Data	Plotting	6					• ×
Examples		-				Sudara Gradient	444	0	AC Date:	Marca	ata Dalda D	DC Bulle	
⊕-⊡ Ac_1						Contracte Graduers		UL.	AL Helds	Magn	In the second	DC Heas	N.S.L.S.I
B-Y Crout 1 -∞ C1		100							Conduc	tor Surfa	ce Gradients [k	V/cm]	
-82				•		Circuit ID	Bun	de #	Position	< y] @)	Avg.	Avg. Max	
G1			•	•		1		1	[-46.59	35.01]	16.47	17.86	
(8-⊞ AC_2 (9-Ⅲ AC_3)		50 -				1		2	[-18.60	35.01]	16.88	18.31	
B-B 0C_1		1	• •	•	•	1		3	[-18.60	73.00]	16.28	17.66	
		1				2		1	[46.59	35.01]	16.47	17.87	
12 21 23		· · ·	Altitude: 0 ft			2		2	[18.60	73.00]	16.29	17.67	
v Case	-	a 18	Ground Resistivity Relative Ground P	r: 1640.41995	0.4	2		3	[18.60	35.01]	16.40	17.83	
Case name	ACepri 1	1 4	rename oroanar	enneading. r			-						_
Unit System	IMPERIAL												
V General	CO		-20	0	50	<							>
AC frequency (Hz)	60												-
Adduole (t)	U.S.	Bundle	e Geometry		• ×	Bundle Data	1						• ×
Mobility of issue #34 V a)	1 6145965674149014					ř –	-		Constitute	_		DC Revision	
Onset conduct & V.(cm)	14					Subconductor	a	(m)	opacing	Die	meter (n)	(D/m)	•
Schipp Ionized Ealds?	Entre	1					10			1.070		(FD 10005000000	
Using coset gradient?	Top					1	18.	0		1.525		53.108352000000	004
 Ground Sectors 	1100					2	18	0		1.525		53.108352000000	0004
Earth resistivity (O.ft)	1640 41995	0-	•	•									
Relative ground permeability	1	1											
Plotting AN		/ 1											
AC frequency (Hz) Steady state frequency of AC system (Hz).			-1	0	1								
Output													₹×
Computing Radio Interferences AC: BPA Completed!													^
Computing Static Electric Fields Completed!													
Computing Magnetic Fields													~
Ready													

2. FACE GUI: Case Property Window

• Case Property – users can edit parameters for a selected project

2. FACE GUI: Tower Geometry Window

• Tower Geometry Window shows cross-section that includes bundle and ground wire placement

2. FACE GUI: Bundle Geometry Window

• Bundle Geometry Window show a cross-section that includes subconductor placement

2. FACE GUI: Bundle Data Window

• Bundle Data Window shows the data for bundles and their individual sub conductors

2. FACE GUI: Output Window

• Output Window shows code, simulation results, and error messages

2. FACE GUI: Plotting Window

• Plotting Window where simulation results are displayed and navigated

3. Examples & Validations

- Surface Gradient
- AN
- RI
- CL
- Static Electric Fields
- Static Magnetic Fields
- Ionized Fields

3. Examples & Validations: Surface Gradients

- IEEE Committee Paper: "A Survey of Methods for Calculating Transmission Line Conductor Surface Voltage Gradients," IEEE Trans., PAS, vol. 98, 1979. <u>Total 13 Cases</u>
- IEEE Committee Paper, "A Comparison of Methods for Calculating Audible Noise of High Voltage Transmission Lines," IEEE Trans., PAS, vol.101, no.10, pp. 4090-4099, Oct. 1982. <u>20 AC and 4 DC Cases</u>
- Robert G. Olsen, Steven D. Schennum and Vernon L. Chartier, "Comparison of Several Methods for Calculating Power line Electromagnetic Interference levels and Calibration with Long Term Data," IEEE Transactions on Power Delivery, Vol. 7, No. 2, April 1992. Total 9 AC Cases

3. Examples & Validations: Surface Gradients

[28] IEEE Committee Paper, "A Survey of Methods for Calculating Transmission Line Conductor Surface Voltage Gradients," IEEE Trans., PAS, vol. 98, pp. 1996-2014, 1979.

		5405.0		Successive	Images(17)	Successive	Images(18)	Error					
Case	SF	FACER	esuits	IEEE R	esults	IEEE R	esults			Error			
		C.P	O.P	C.P	O.P	C.P	O.P	C.P	O.P	C.P	O.P		
	A	15.51	14.67	15.51	14.66	15.51	14.62	0	0.01	0	0.05		
1	AM	15.51	14.67	15.51	14.79	15.51	14.68	0	-0.12	0	-0.01		
	MB	15.51	14.67	15.51	14.79	15.51	14.68	0	-0.12	0	-0.01		
	A	14.69	13.59	14.69	13.59	14.69	13.53	0	0	0	0.06		
2	AM	15.67	14.49	15.64	14.46	15.64	14.4	0.03	0.03	0.03	0.09		
	MB	15.67	14.65	15.64	14.47	15.64	14.59	0.03	0.18	0.03	0.06		
	A	14.49	14.21	14.49	14.17	14.49	14.17	0	0.04	0	0.04		
Зa	AM	15.5	15.2	15.46	15.12	15.46	15.12	0.04	0.08	0.04	0.08		
	MB	15.58	15.2	15.56	15.12	15.56	15.12	0.02	0.08	0.02	0.08		
	A	14.57	14.2	14.57	14.2	14.57	14.16	0	0	0	0.04		
зь	AM	15.58	15.18	15.56	15.24	15.54	15.1	0.02	-0.06	0.04	0.08		
	MB	15.67	15.18	15.68	15.32	15.65	15.1	-0.01	-0.14	0.02	0.08		
	A	15.37	15.27	15.37	15.27	15.36	15.26	0	0	0.01	0.01		
4a	AM	16.74	16.63	16.68	16.59	16.67	16.56	0.06	0.04	0.07	0.07		
	MB	16.74	16.77	16.68	16.63	16.67	16.75	0.06	0.14	0.07	0.02		
	A	14.98	15.35	14.98	15.35	14.97	15.33	0	0	0.01	0.02		
4Ь	AM	16.31	16.72	16.26	16.68	16.25	16.64	0.05	0.04	0.06	0.08		
	MB	16.31	16.86	16.26	16.81	16.25	16.83	0.05	0.05	0.06	0.03		
	A	14.43	13.51	15.23	14.21	15.22	14.15	-0.8	-0.7	-0.79	-0.64		
5	AM	16.04	15.03	16.91	15.77	16.89	15.71	-0.87	-0.74	-0.85	-0.68		
	MB	17.12	16.19	17.03	15.92	16.9	15.87	0.09	0.27	0.22	0.32		
	A	18.54	17.23	18.54	17.23	18.53	17.15	0	0	0.01	0.08		
6a	AM	21.08	19.6	21.06	19.58	21.05	19.48	0.02	0.02	0.03	0.12		
	MB	21.08	19.83	21.18	19.75	21.05	19.48	-0.1	0.08	0.03	0.35		
~	A	18.54	17.05	18.54	16.95	18.53	16.95	0	0.1	0.01	0.1		
66	AM	21.09	19.39	21.06	19.26	21.05	19.26	0.03	0.13	0.04	0.13		
	MB	21.09	19.64	21.17	19.54	21.05	19.54	-0.08	0.1	0.04	0.1		
-	<u> </u>	15.72	12.41	13.72	12.31	13.7	12.31	0.04	0.1	0.02	0.1		
	AIVI	16.56	16.59	16.62	15.04	16.55	14.91	-0.04	-0.05	-0.01	0.08		
	IVID	11.42	10.4	11.04	10.4	11.41	10.22	-0.22	0.21	-0.01	0.08		
	0.0	14.22	12.94	14.29	12.01	14.28	12.92	-0.07	-0.07	-0.02	0.07		
	MB	14.22	12.54	14.25	12.2	14.20	12.52	-0.07	-0.07	-0.06	0.02		
	4	17.20	47	17.40	46	17.5	46	~.22	01	-0.04	0.05		
9 (DC)	AM	19	21	19	13	19	13	i o	08	0.	08		
5 (50)	MB	19	42	19	18	19	9.4	0	24	0.	02		
	A	16	16	16	16	16	15	-	0	0.	01		
10 (DC)	AM	20	49	20	59	20	55	- I	0.1	-0	06		
-0 (00)	MB	21	39	21	13	21 58 0.26					-0.19		
A:Average AM:Average Maximum						C P: Center Phase							
MD: M		Rundle	Cradia	noge waxim	uni				O.R.: Oute	ar Dhace			
IVID: IVI	aximum	Bundle	Gradie	ent					O.P.: Oute	rphase			

For 4.1

3. Examples & Validations: Surface Gradients

[31] 1	EEE CO	ommittee i	aper, 1	A COM	parison	of Me	thous I	or Calc	ulating	g Audio.	le Nois	eorh	ign vo	nage i	ransm	ISSIOII I	Jines,	IEEE I	rans., PA	45, VOI.	101,110.	.10, pp. 4	4090-4	1099, (JCI. 19	64.
										A	Cases													DC C	ases	
Cases			1	2	3	4	5	6	7	8	9	10		11		12	13	14	15	16	17	18	19	20	21	22
													а	b	С											
n=			1	2	3	4	3	4	4	4	4	4	6	10	8	8	7	6	8	8	12	16	4	6	6	4
	Phase	Max	15.8	16.9	15.8	17.6	18.3	18.4	16.2	19.8	17.4	22.6	21.80	-	-	14.9	15.9	12.8	14.9	12.5	13.8	13	28.2	25.9	24	21.7
	Α	Avg-Max	15.8	16.7	15.6	16.6	17.8	18.2	16	19.6	17.1	22.3	21.60	-	-	14.5	15.5	12.4	14.5	12.2	13.5	12.5	27.6	25	23.5	21.1
0-61	Phase	Max	16.8	17.9	16.8	16.9	17.2	19.8	17.3	21.1	18.4	24.5	-	15.9	-	15.5	14.9	13.4	15.5	13	14.6	13.4				
Ket 1	В	Avg-Max	16.8	17.9	16.8	16.1	16.6	19.8	17.3	21.1	18.4	24.5	-	15.7	-	15.4	14.6	13.1	15.4	12.9	14.4	13.3				
	Phase	Max	15.8	16.9	15.8	17.6	17.1	18.4	16.2	19.8	17.4	22.6	-	-	18.3	14.9	15.9	12.8	14.9	12.5	13.8	13				
	С	Avg-Max	15.8	16.7	15.8	16.5	16.4	18.2	16	19.6	17.1	22.3	-	-	-	14.5	15.5	12.4	14.5	12.1	13.5	12.5				
	Phase	Max	15.82	16.94	15.87	17.46	18.22	18.53	16.24	19.9	17.44	22.55	21.49			14.84	15.72	12.68	14.83	12.48	14.03	12.91	27.84	25.86	23.96	21.65
	Α	Avg-Max	15.82	16.8	15.7	16.5	17.8	18.3	16.05	19.67	17.22	22.27	21.2			14.54	15.48	12.41	14.46	12.15	13.59	12.44	27.37	25.01	23.44	21.28
FACE	Phase	Max	16.84	17.92	16.88	16.83	17.11	19.83	17.3	21.12	18.44	24.55		16.02		15.41	14.81	13.1	15.01	12.93	14.44	13.31				
Results	В	Avg-Max	16.84	17.92	16.87	16.09	16.69	19.83	17.3	21.11	18.43	24.53		15.86		15.38	14.6	13.09	14.73	12.9	14.39	13.26				
	Phase	Max	15.82	16.94	15.87	17.46	17.03	18.53	16.24	19.9	17.44	22.55			17.83	14.84	15.72	12.68	14.83	12.48	14.03	12.91				
	С	Avg-Max	15.82	16.8	15.7	16.5	16.42	18.3	16.05	19.67	17.22	22.27			17.51	14.54	15.48	12.41	14.46	12.15	13.59	12.44				
			0.02	0.04	0.07	0.14	0.08	0.13	0.04	0.1	0.04	0.05	0.31			0.06	0.18	0.12	0.07	0.02	0.23	0.09	0.36	0.04	0.04	0.05
			0.02	0.1	0.1	0.1	0	0.1	0.05	0.07	0.12	0.03	0.40			0.04	0.02	0.01	0.04	0.05	0.09	0.06	0.23	0.01	0.06	0.18
	Freeze		0.04	0.02	0.08	0.07	0.09	0.03	0	0.02	0.04	0.05		0.12		0.09	0.09	0.3	0.49	0.07	0.16	0.09				
	EITOR	5	0.04	0.02	0.07	0.01	0.09	0.03	0	0.01	0.03	0.03		0.16		0.02	0	0.01	0.67	0	0.01	0.04				
			0.02	0.04	0.07	0.14	0.07	0.13	0.04	0.1	0.04	0.05			0.47	0.06	0.18	0.12	0.07	0.02	0.23	0.09				
			0.02	0.1	0.1	0	0.02	0.1	0.05	0.07	0.12	0.03				0.04	0.02	0.01	0.04	0.05	0.09	0.06				
	Max. er	ror	0.04	0.1	0.1	0.14	0.09	0.13	0.05	0.1	0.12	0.05	0.40	0.16	0.47	0.09	0.18	0.3	0.67	0.07	0.23	0.09	0.36	0.04	0.06	0.18

3. Examples & Validations: Surface Gradients

Robert G. Olsen, Steven D. Schennum and Vernon L. Chartier, "Comparison of Several Methods for Calculating Power line Electromagnetic Interference levels and Calibration with Long Term Data," IEEE Transactions on Power Delivery, Vol. 7, No. 2, April 1992

Case #		Paper		FACE	Avg. Max			Error	
	А	В	С	А	A B C		Α	В	С
1	14.97	14.25	15.06	14.94	14.2	14.94	-0.03	-0.05	-0.12
	14.98	14.13	14.88	15.03	14.2	14.94	0.05	0.07	0.06
2	15.07	15.93	15.07	15.07	15.93	15.07	0	0	0
3	15.42	16.21	15.42	15.42	16.21	15.42	0	0	0
4	16.19	17.29	16.19	16.2	17.3	16.2	0.01	0.01	0.01
5	13.36	15.16	14.92	13.36	15.17	14.94	0	0.01	0.02
	11.69	13.95	12.5	11.67	13.82	12.5	-0.02	-0.13	0
6	19.5	20.95	19.5	19.51	20.96	19.51	0.01	0.01	0.01
7	17.42	16.95	17.7	17.4	16.96	17.72	-0.02	0.01	0.02
	17.74	16.95	17.37	17.72	16.96	17.4	-0.02	0.01	0.03
8	17.24	17.45	16.13	17.25	17.45	16.13	0.01	0	0
	16.7	18.14	17.62	16.71	18.15	17.63	0.01	0.01	0.01
9	18.37	19.8	18.37	18.38	19.81	18.38	0.01	0.01	0.01

3. Examples & Validations: AN (audible noise)

- IEEE Committee Paper, "A Comparison of Methods for Calculating Audible Noise of High Voltage Transmission Lines," IEEE Trans., PAS, vol.101, no.10, pp. 4090-4099, Oct. 1982.
 - 20 AC and 4 DC Cases
- Comparison to BPA free software (From Teshmont)

- <u>8 DC Cases</u>

3. Examples & Validations: AN (audible noise)

[31] IEEE Committee Paper, "A Comparison of Methods for Calculating Audible Noise of High Voltage Transmission Lines," IEEE Trans., PAS, vol.101, no.10, pp. 4090-4099, Oct. 1982.

										AC C	Cases											
	Case #		1	2	3	4	5	6	7	8	9	10	11a	11b	11c	12	13	14	15	16	17	18
n			1	2	3	4	3	4	4	4	4	4	6	10	8	8	7	6	8	8	12	16
	BPA	L50	61.2	54.3	45.6	50.5	51.5	54.8	50.9	57.7	55.1	61.1	61.2	54.6	58.1	52	57.1	52.2	55.2	54.5	52.4	51.4
rof 1	GE	L5	65.7	61.2	51.2	55.8	56.5	58.1	56	59.8	59.3	60.5	61.6	59	61.2	58.1	62.3	58.2	61.3	60.9	59	58.8
reri	UC	L50	60.3	55.1	46.6	51.9	52.8	55.7	54.4	58.2	56.6	59.9	61.2	54.7	58.6	52.9	58.4	52.8	56.7	55.4	54.1	53.9
	IREQ	L5	53.5	53.9	51.7	55.8	57.6	57.7	56	59.3	58.9	60.2	60.5	59.7	60.6	58.5	62.3	60.3	62	63.2	59	59.8
	DDA	L5	63.55	56.1	47.42	52.56	53.74	57.3	53.48	60.05	57.18	63.64	62.63	54.54	59.86	54.69	59.49	54.99	58.5	57.36	55.26	54.1
	DPA	L50	60.05	52.6	43.92	49.06	50.24	53.8	49.98	56.55	53.68	60.14	59.13	51.04	56.36	51.19	55.99	51.49	55	53.86	51.76	50.6
	GE	L5	64.45	59.48	49.48	54.34	55.12	57.08	55.05	58.68	57.88	59.49	59.83	55.4	59.67	57.2	61.19	57.45	61.11	60.04	58.35	58
FACE	95	L50	59.01	53.39	44.91	50.4	51.42	54.67	51.34	57.03	55.17	58.96	59.22	51.22	56.88	51.97	57.28	52.02	56.64	54.67	53.42	53.15
		L5	52.3	52.34	50.26	56	56.05	56.74	55.17	58.23	57.51	59.48	59.24	56.28	59.81	58.05	61.66	60.06	61.77	62.43	59.57	59.84
	IKEQ	L50	48.8	48.84	46.76	52.5	52.55	53.24	51.67	54.73	54.01	55.98	55.74	52.78	56.31	54.55	58.16	56.56	58.27	58.93	56.07	56.34
	BP	A	1.15	1.7	1.68	1.44	1.26	1	0.92	1.15	1.42	0.96	2.07	3.56	1.74	0.81	1.11	0.71	0.2	0.64	0.64	0.8
CDDOD	GE	L5	1.25	1.72	1.72	1.46	1.38	1.02	0.95	1.12	1.42	1.01	1.77	3.6	1.53	0.9	1.11	0.75	0.19	0.86	0.65	0.8
CKKUK	GE	L50	1.29	1.71	1.69	1.5	1.38	1.03	3.06	1.17	1.43	0.94	1.98	3.48	1.72	0.93	1.12	0.78	0.06	0.73	0.68	0.75
	IRE	Q	1.2	1.56	1.44	0.2	1.55	0.96	0.83	1.07	1.39	0.72	1.26	3.42	0.79	0.45	0.64	0.24	0.23	0.77	-0.57	-0.04

3. Examples & Validations: RI (Radio Interference)

- Robert G. Olsen, Steven D. Schennum and Vernon L. Chartier, "Comparison of Several Methods for Calculating Power line Electromagnetic Interference levels and Calibration with Long Term Data," IEEE Transactions on Power Delivery, Vol. 7, No. 2, April 1992. <u>Total 9 AC Cases</u>
- Comparison to BPA Software results (provided by Teshmont)
 - <u>8 DC Cases</u>

3. Validations: Static Electric & Magnetic Fields

- Comparison to BPA Software Results (provided by Teshmont)
 - -Static Electric Fields: 8 DC cases
 - Magnetic Fields: 8 DC Cases

3. Validations: Static Electric & Magnetic Fields

Figure 1.5. Case 2-a diagram, one possible upgrade to a bipolar scheme.

50

3. Validations: Static Electric & Magnetic Fields

3. Validations: Ionized Field Computation

- <u>Theory & Solutions: Online help</u>
- Validation Examples: MH Bipole 1 & 2

TABLE 1. OPERATING VOLTAGES IN KV FOR TWO CASES CONSIDERED

	Pole 1	Pole 2	Pole 3	Pole 4
Case 1	-450	450	-450	0
Case 2	-440	440	-470	470

Fig. 1. Geometry of the Manitoba Nelson River

3. Validations: Case 1, Ion trajectories

Fig. 4a. Ion trajectories at Ground Level in Case 1.

3. Validations: Case 1, Simulation Results

Fig. 4b. Electric Field Profile at Ground Level for Case 1.

Fig. 5. Ion Current and Charge Densities at Ground Level for Case 1.

3. Validations: Case 2, Ion Trajectories

Fig. 11(a). Ion Trajectories h = 1.5 m for case 2.

3. Validations: Case 2, Simulation Results

Fig. 9. Electric Field Profile at Ground Level for Case ≩ig. 10. Ion Current and Charge Densities at Ground Level for Case 2.

3. Validations: Case 2, at various meas. height h

Demonstrate Robustness & Efficiency

3. Validations: Case 2, at various meas. height h

Demonstrate Robustness & Efficiency

Questions & Answers

Thank you

Wujun Quan, Ph.D., P. Eng.

Sr. Research & Study Engineer

