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Outline

Electromagnetic Transient simulation plays an important role during integration of wind
and other renewable energy based generation to transmission networks. This is mostly
in view of the fact that renewable generation is connected to grids through power
electronic inverters.
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General Description of Challenges
 Inverter based interface to power systems

 Brief Introduction to different wind turbine generator technologies

 A brief introduction to Inverters  and invert controls 

 Impact of transmission network characteristics

o Connecting to weak grid locations

 EMT Studies – Background and the need for EMT studied

Brief Description of Selected Practical Cases (USA, UK and Australia)
 Low inertia concerns - South Australian Blackout 2016

 (Control) Interaction Issues 

 Low frequency voltage oscillations

 Resonance issues and inverter response to network voltage and current transients

 Controls interactions and Torsional interaction (SSTI) concerns

PSCAD simulation examples

Outline
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• The characteristics of wind generators are much different from traditional synchronous machine based 
generation.

• Nature of AC or HVDC transmission used to connect wind to the transmission grid (long ac cables, filters, weak 
grids, series compensation)

Wind Generators and Influence of Transmission System 
Characteristics

Synchronous Generator Based

Wind Type 3
Wind Type 4
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The Synchronous generator response is 
determined by

• Machine electrical characteristics

• Exciter characteristics

• Governor / turbine 

• Inertia of the rotating masses

The inertial response immediately follows the event

• The inertial response is due to the inertia of 
large synchronous generators

• Primary control - 20 - 30 Sec 

• Power electronic based generation does not 
provide the same style of ‘inertia’

Characteristics of Synchronous Generators
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Weak grid (Low short circuit current, high 
system impedance)

• T3 and T4 controls depend on 
system voltage and current 
measurements as inputs

• Weak grids : Changes in system 
quantities are harder to track 
following a system event.

• Specially the change in voltage 
phase.

Series compensated systems

• Network resonance points in the 
sub synchronous frequency 
range ( < 50 Hz)

Base Case - Case1
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Wind and Solar PV generation – Based on Power Electronic 
converter interface – Impact of Network Characteristics
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• The dynamic characteristics of wind and Solar PV installations are much different from traditional synchronous machine based 

generation.

• Nature of AC (or HVDC transmission) used to connect wind to the transmission grid (weak grids, series compensation, long ac 

cables, filters) has a significant impact on wind/solar PV response following system events.

Inputs to generator controls:
RMS and instantaneous inputs to 
inverters

Wind Generators and Transmission characteristics
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Wind Generators and Transmission Characteristics
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Bus voltage following a 
fault

This voltage must be 
tracked and phase angle 
shifts estimated accurately 
and fast to ensure stable 
operation

Integration of Wind Power to Weak Grids – Example

time

P and Q 
reference

Idref (Pref)

Iqref(Qref)
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VSC Control Strategies
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• EMT simulations must be used to accurately 
represent the response of the PLL and fast 
controls.

• This is more of a concern in ‘weak grid 
interconnections’ and when there is significant 
penetration of renewables in an area.

Integration of Wind Power to Weak Grids – Example
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Power reversal as an example  - Fault Recovery of an offshore windfarm

Importance of Accurate PLL Response



Voltage Source Inverters
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• The firing pulses for the IGBT’s are generated by the inverter controls

• DC link voltage should maintained within a narrow band around the rated DC link voltage

• For normal operation   

A

B

C

1 3 5

4 6 2

𝑉𝑑𝑐 > 𝑉𝑎𝑐,𝑝𝑘

Two Level VSC Topology
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VSC = Voltage Source Converter

Two Level VSC Topology – Control of P and Q

From PLL
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If 𝑉𝑟𝑚𝑠 −𝑝𝑢 ≥ 0.55p. u.→
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VSC Control Functions - Limits
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L

BRK

G

𝑃𝑟𝑒𝑓 => 𝐼𝑑1,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓 => 𝐼𝑞1,𝑟𝑒𝑓

𝑉𝑑𝑐 => 𝐼𝑑2,𝑟𝑒𝑓

𝑉𝑟𝑒𝑓(𝑄𝑟𝑒𝑓) => 𝐼𝑞2,𝑟𝑒𝑓

Fault

Example: 
• Coordination between the two converters and turbine pitch controller
• Action of DC link chopper

VSC Control Functions – Coordination Between Different Elements
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Electromagnetic Transient Simulations
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PSCAD/EMTDC – The Industry Standard EMT Program
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RMS Type Simulations 
• Each solution based on phasor 

calculations
• 50Hz/60 Hz representation of electric 

network
• Network dynamics are not considered

Electro-Magnetic Transient 
Simulations (EMT)

• Direct time domain solution 
of Differential Equations

i

ω = 2. π. 50

Transients and Steady State

𝑉 = ω = 𝑅 ∙ 𝐼 ω + 𝑗 𝐿ω ∙ 𝐼 ω 𝑣 𝑡 = 𝑅 ∙ 𝑖 𝑡 + 𝐿
𝑑

𝑑𝑡
𝑖 (𝑡)
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- Harmonics
- DC offset in currents and voltages are represented
- Fast controls of inverters can be better represented
- Interaction between fast acting power electronic devices 

can be studied
- Accurate representation of PLL
- However, EMT simulations are slow compared to RMS 

type simulations
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EMT Vs RMS Response - Example



Weak Grids
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A ‘weak’ Point of connection (POC) (‘weak’ grid)

• Low short-circuit current level at POC

• High system impedance

Injection of P and Q (Current) at a weak POC will lead to voltage 

variations at the bus

Zsystem

VPOC
VTH

VPOC = Iinj x Zsystem + VTH

Iinj

Weak Grids – Low Short Circuit Ratio (SCR)
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Injection of P and Q (Current) at a weak POC will lead 

to voltage variations at the bus 

Small Q Injection ‘Large’ Voltage Change

Weak Grids – Undesirable Interactions
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EMT simulations are required to verify acceptable operation.
• Two or more ‘fast’ voltage controllers
• ‘Weak’ POI ?
• Comparable Q controls responses ?

Weak Grids – Undesirable Interactions
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Illustrative example: Control Related Issues - HVRT 

Note the Iq reference (from 
fault Ride Through protection 
and control of inverter)

Weak Grids – Undesirable Interactions
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Illustrative example: Control Related Issues - HVRT 

• Voltage drop is relatively low.
• The LVRT reactive current injection 

is ‘proportional’ to the magnitude 
of voltage drop

• Iq injection is insufficient to help 
voltage recovery
o Not necessarily a WTG 

control issue

Weak Grids – Undesirable Interactions
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Weak Grids – Undesirable Interactions
Illustrative example: Interaction between two devices



Practical Examples



Example 1 – Black System South Australia – September 
28, 2016
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Example 3 – Black System South Australia – September 
28, 2016
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Event Description

• Extreme weather conditions resulted in five system faults on the SA transmission system in the 87 seconds between 16:16:46 and
16:18:13, with three transmission lines ultimately brought down.

• In response to these faults, and the resulting six voltage disturbances, there was a sustained reduction of 456 MW of wind
generation to the north of Adelaide.

• Increased flows on the Heywood Interconnector counteracted this loss of local generation by increasing flows from Victoria to SA.

• This reduction in generation and increase of imports on the Interconnector resulted in the activation of Heywood
Interconnector’s automatic loss of synchronism protection, leading to the ‘tripping’ (disconnection) of both of the transmission
circuits of the Interconnector. As a result, approximately 900 MW of supply from Victoria over the Interconnector was
immediately lost.

• This sudden and large deficit of supply caused the system frequency to collapse more quickly than the SA Under-Frequency Load
Shedding (UFLS) scheme was able to act.

• Without any significant load shedding, the large mismatch between the remaining generation and connected load led to the
system frequency collapse, and consequent Black System.

Black System South Australia – September 28, 2016
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Fault ride through requirement of wind farms

• Wind farms did meet the ride through requirement for the number of faults within the short 
duration

• However, an additional protection that was not known to system operators got activated to trip 
some of the wind farms (more than 3-4 faults experienced within a pre defined short duration)

Black System South Australia – September 28, 2016
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Generation Mix and System Inertia:

• The system inertia on the SA side was not sufficient to maintain the frequency drop (once the
Haywood interconnector tripped) and to make the under frequency load shedding (UFLS)
effective.

• ‘Must run’ thermal generation may have to be identified.

• Synchronous condensers may be investigated as a potential solution if the thermal generation
dispatch is expected to be low under specific load conditions.

• Load shedding

Black System South Australia – September 28, 2016

Lessons Learned and Recommendations
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Reference:

BLACK SYSTEM SOUTH AUSTRALIA 28 SEPTEMBER 2016  - Report by

AEMO

www.aemo.au

Black System South Australia – September 28, 2016

System Studies – Model Validity



Example 2 –300 MW Wind Farm near Series Compensated 
345 kV line – SSCI and Interaction with Network Transients
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Wind Farms Near Series Compensated Lines

The series compensated line is tapped to facilitate the wind farm 
connection
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The DC offset in the POI voltage caused the 
inverter DC link voltage to rise.
- Poor network side damping
- Excessive energy in DC link chopper 

resistance (resulted in a trip)

Wind Farms Near Series Compensated Lines

Issue No.2: Wind Inverter response to system transients



Example 3 – Multiple Inverter Based Devices in a Local 
Area – Control Interactions in a Weak Grid Area
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• Fault is applied at 15s for 120ms

• First 10ms duration fault: large rotation in Vd and 
Vq frame leads to high Iq injection and Low Id 
injection

• Next 50ms, inverter bring down Id and Iq to allow 
the PLL to relock to the phase

• Last 60ms during the fault: inject Iq to support the 
system

• After fault release, PLL goes unstable and causes 
large voltage fluctuation

Example 1 - Control Interaction - 200 MW Windfarm 
Example



pscad.com
Powered by Manitoba Hydro International Ltd.

time

P and Q 
reference

Pref

Qref

• Power and reactive power ramp rate following fault clearance are key parameters that can lead to ‘interactions’ 
– specially under weak grid conditions 

• Power restore requirement upon fault; ‘Typical’ requirement is 95% power within 100 ms
• Maybe  negotiated with TSO

• SRC was approximately 1.5 – 2

Multiple inverter based generation and dynamic reactive power 
compensation devices connected in a weak grid area – Control 
interaction and coordination problem



Example 4 – Low Frequency Voltage Oscillations – Weak 
Grid Issue
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Low Frequency Voltage Oscillations – Interaction between multiple dynamic devices
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Example 2 – Low Frequency Voltage Oscillations (8- 10 Hz range)



Example 5 – Faults on Collector system
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• Wind farm and collector system 
connected to the power grid 

• Breakers opened due to a fault on 
the ac network

• Breakers isolate the wind 
turbines (WTs) and the cables 
from the grid

• Rapid increase of the collector 
network and terminal voltages 
of WTs

Study Model – Temporary Over voltages (TOV)
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Rapid increase of the collector network and terminal voltages of WTs

• Serious TOV concern

• WTGs should be able to limit this TOV through protection and control action

• Cable capacitance and number of tripped WTG units effect TOV

TOV on Isolated Collector Feeders



pscad.com
Powered by Manitoba Hydro International Ltd.

Fault on the 110 kV side

TOV on Isolated Collector Feeders



Example 6 – Harmonic Performance
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Harmonics injected from the converter
based wind (or PV) penetrated to the POI
and utility network via the array cables or
lines.

What are the harmonic impact at POI
and customer load locations (THD).

POI
Ia

1.0

0.0

Ia (kA) [6]  0.00628253



pscad.com
Powered by Manitoba Hydro International Ltd.

Vh - Harmonic voltage source 

ZhVh

Zh - Harmonic impedance (frequency 
dependent)

The simplified harmonic source
parameters are derived based on
detailed EMT model response and
(potentially) validated through field
measurements

Harmonic Model of a WTG



Example 7: – Control Interaction and SSTI Impacts -
South East England 



pscad.com
Powered by Manitoba Hydro International Ltd.

• South East England is where several HVDC interconnectors land and is a region that has little synchronous 
plants and even that is being displaced by offshore wind farms.  

• Three STATCOMs commissioned to provide voltage support. 

• The short circuit ratio is low and reactive current during a fault is sought.

• Control interactions and sub synchronous oscillations concerns given the ‘weak grid’.

To Netherlands (BritNed)

To Belgium (Nemo Link)

To France (ElecLink)

To France (IFA)

Potential Control Interaction and SSTI Issues - South East England
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• Modelling the entire South East England network 
including all vendor models for all  HVDC, STATCOMS, 
Wind farms in EMT Platforms.

Potential Control Interaction and SSTI Issues - South East England
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Active Power flow
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The PSCAD model was validated against dynamic response
results of the full National Grid System model in Power
Factory.

Model Validation of South East England between PSCAD and PF
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