

PSCAD

Switching Over Voltages (SOV) Temporary Over Voltage (TOV)

Presented by:

Dharshana Muthumuni Lalin Kothalawala

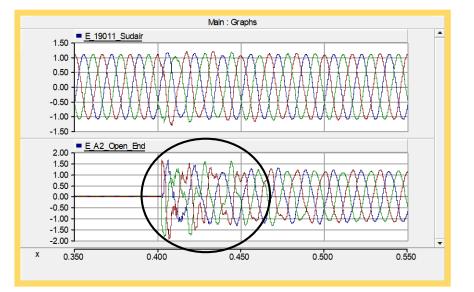
The study approach to SOV investigation, using the PSCAD/EMTDC simulation tool, is discussed in this webinar. The following topics are addressed:

- Switching over voltages and Temporary over voltages
- Power system modeling for switching studies
 - o System model
 - Component models (transformers, breakers, shunt devices)
 - o Surge arresters
- Simulation of switching events
 - Point-on-wave impact
 - Trapped charge on lines/cables
 - o Line reactor impacts
- Transformer energizing transients
- Coupled line resonance examples
- PSCAD examples

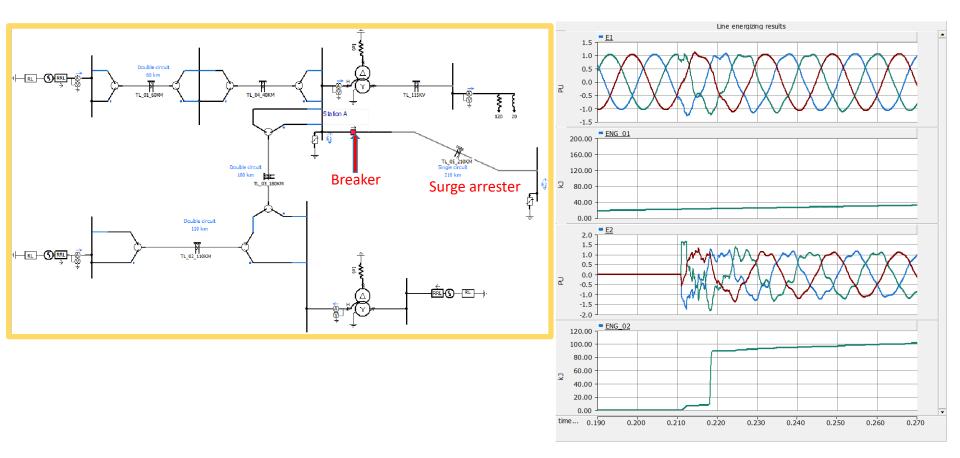
Objectives of a switching study:

- Determine the over voltage levels due to switching events
- Verify equipment insulation levels will not be violated
- Verify surge arrester requirements and surge arrester ratings
- Identify potential network resonance issues

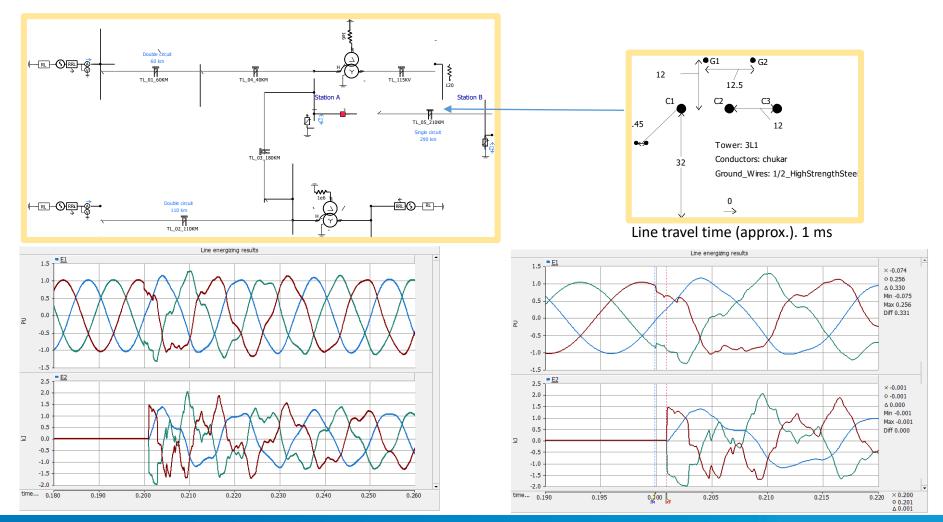
Types of studies:


- Switching frequency over voltage studies (SOV)
- Temporary over voltage studies (TOV)
- Transformer energizing

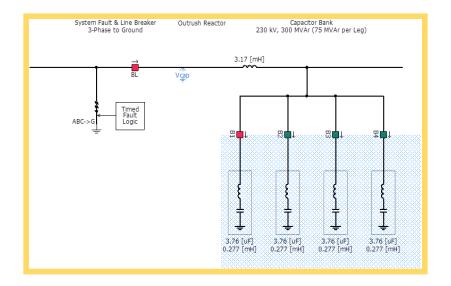
Class	Low frequency		Transient			
	Continuous	Temporary	Slow-front	Fast-front	Very-fast-front	
Voltage or over- voltage shapes	T_{t}					
Range of voltage or over- voltage shapes	f = 50 Hz or 60 Hz Tt ≥3 600 s	10 Hz < f < 500 Hz 0,03 s $\leq T_{t}$ \leq 3 600 s	20 μs < T _p ≤ 5 000 μs T ₂ ≤ 20 ms	0,1 μs < T ₁ ≤ 20 μs T ₂ ≤ 300 μs	$3 \text{ ns} < T_{f} \le 100 \text{ ns}$ $0,3 \text{ MHz} < f_{1}$ < 100 MHz $30 \text{ kHz} < f_{2}$ < 300 kHz	

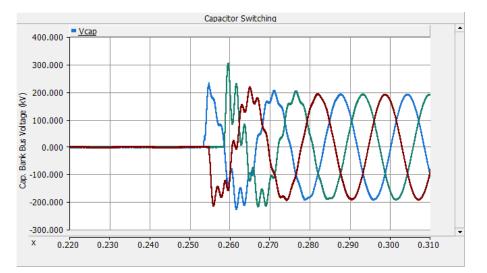


- Switching over voltages (SOV) result from the operation of breakers and switches or due to faults in a power system.
- Switching actions lead to travelling waves on transmission lines, in addition to initiating oscillations in local L-C elements.
- Such travelling waves and local oscillations can appear as high frequency voltage transients in the network. The switching transient frequencies can reach up to a few kHz (say 500 Hz – 2 kHz)
- Typically SOVs are well damped (due to system losses and loads) short duration

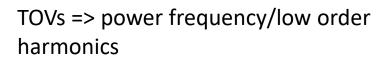


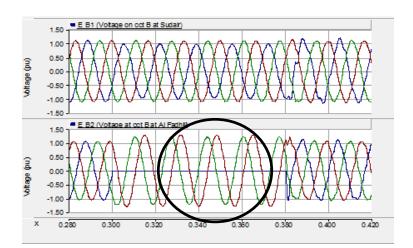
Travelling waves on Transmission Lines

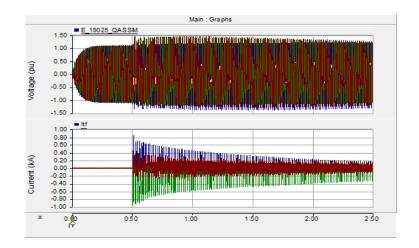

Travelling waves on Transmission Lines



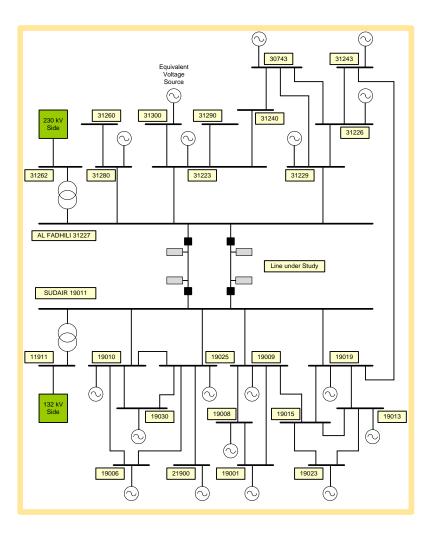
pscad.com Powered by Manitoba Hydro International Ltd.


Local lumped L-C Oscillations





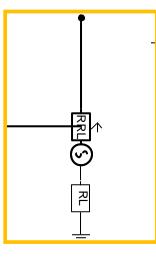
- Ferranti effect (Open end line voltage)
- Single line to ground faults
- Load rejection
- Transformer energizing
- Parallel line resonance


PSCAD Modeling Considerations

380 kV System example:

System model captures details up to around 2-3 buses from the switching location.

Modelling Considerations

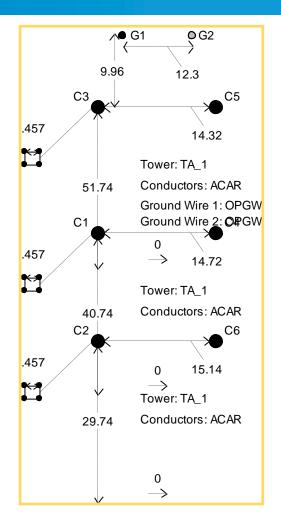

- System represented at least up to two buses away from point of interest
 - $\,\circ\,$ The impact of the fast transients are limited to a local area around the station
 - The transient itself is mainly influenced by the circuit elements (R-L-C) in close vicinity to where the disturbance (e.g. breaker action/fault) occurred
- Frequency dependent transmission line models Travelling waves and damping due to line resistance
- Detailed transformer model including saturation data
- Shunt devices Can influence network resonances
- Surge arrester non- linear characteristics- Main protective device limiting SOV
- Equivalent voltage source models to represent network boundaries/ generators/motors fast transients die out relatively fast compared to mechanical dynamics of generators can influence SOV (in most cases)

Network boundary equivalence

Model data:

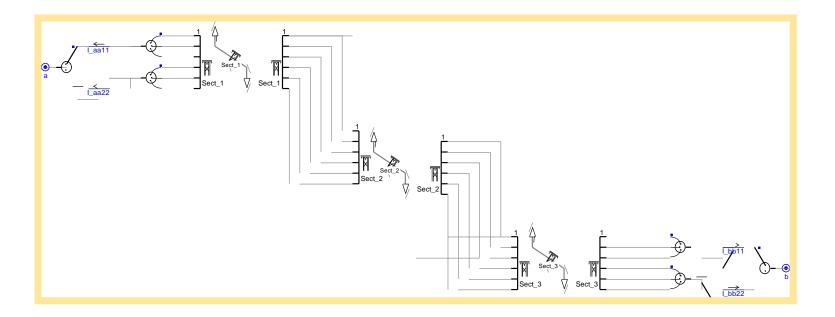
- Bus voltage & angle
- Positive sequence
 impedance
- Zero sequence impedance

-	2↓ 🕾 🗳		
4	General Voltage Magnitude (L-L, RMS)	139.8 [kV]	
	Frequency	60.0 [Hz]	
	Phase	-51.96 [deg]	
	Initial Real Power	-3.241 [pu]	
	Initial Reactive Power	-0.174 [pu]	

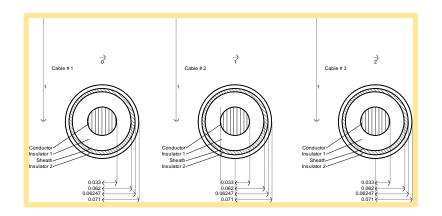

Tower / Line Details

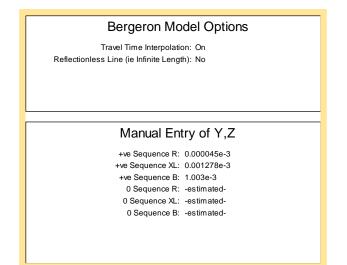
- Geometrical arrangement of conductors
- Ground clearance
- Line sag

Conductor Data


- Conductor type
- Radius
- DC resistance
- Bundle data
- Ground wire data

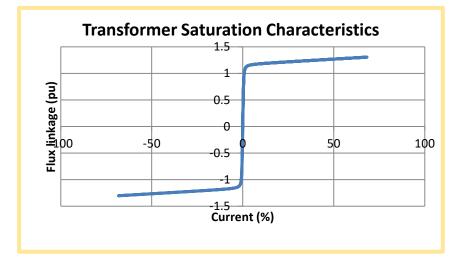
	Conductor data			
	Parameter	Value		
1	Conductor type	XXX		
2	Outer radius (effective)	0.7025 [in]		
3	DC resistance	0.0948 [ohm/mi]		
4	Conductor sag	20 [ft.]		
5	Bundle sub-conductors	2 [nos.]		


Line Transposition

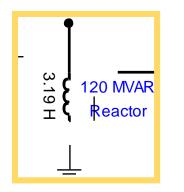


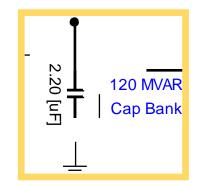
Cable model

- Bergeron model
 - R,X,B (or Surge impedance and travel time)
- Frequency dependent model
 - o Based on Cable design data



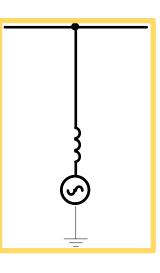
Model data


- General data
 - Ratings, impedance
- Saturation data



🖳 3 Phase Star-Star Auto Transfomer with a tertiary						
Configuration						
8≣ 2↓ ☎ 🛋						
▲ General						
Transformer MVA	300.0 [MVA]					
Base operation frequency	60.0 [Hz]					
Leakage reactance (H-L)	0.072 [pu]					
Leakage reactance (H-T)	0.553 [pu]					
Leakage reactance (L-T)	0.462 [pu]					
Noloadlosses	0.00036 [pu]					
Ideal transformer model	No					
Tertiary winding	Delta					
Delta leading or lagging	Lag					
On line tap changer	No					
General						
Ok Cancel	Help					

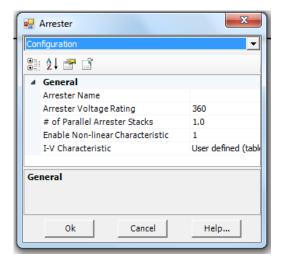
- Shunt reactor with equivalent inductance (or as an non-linear inductor)
 - Single phase units
 - o Three limbed core or five limbed core units
- Shunt capacitor with equivalent capacitance
- Series compensation with equivalent capacitance

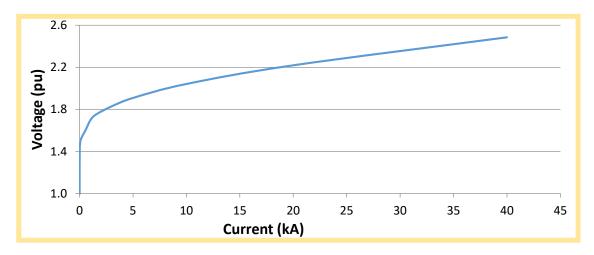


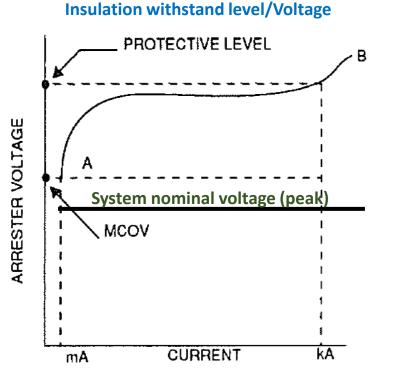
$$x = \frac{kV^2}{MVAr}$$
$$x = \omega L \text{ or } 1/\omega 0$$

Model data

- Bus voltage & angle
- Positive sequence impedance (Xd")
- Zero sequence impedance (if available)



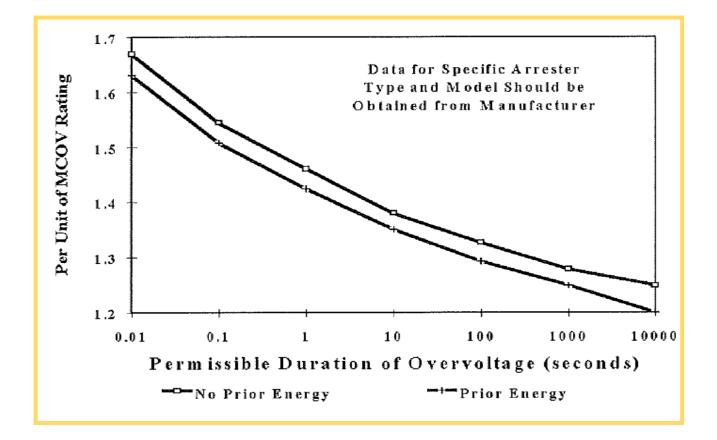

2 2 🚰 🖻		
⊿ General		
Voltage Magnitude (L-L, RMS)	139.8 [kV]	
Frequency	60.0 [Hz]	
Phase	-51.96 [deg]	
Initial Real Power	-3.241 [pu]	
Initial Reactive Power	-0.174 [pu]	


Model data

- Arrester rating 360 kV
- V-I characteristic
- Energy absorption capability 13 kJ/kV

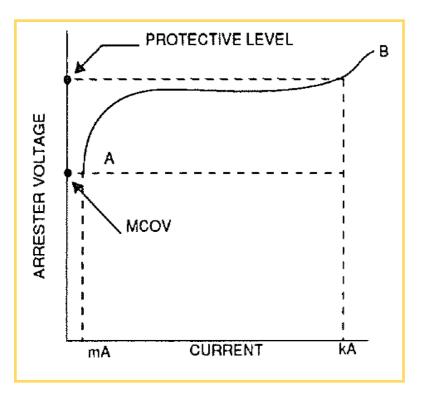
- Discharge voltage (protection level) is a function of the rise time of the current surge
- Faster surges result in a higher discharge voltage (ex. lightning)
- The discharge voltage for a switching surge could typically be 2% - 4% lower than that for a comparable (current peak) lighting surge.
- MCOV is typically 75% 85% of the duty cycle 'voltage rating'.

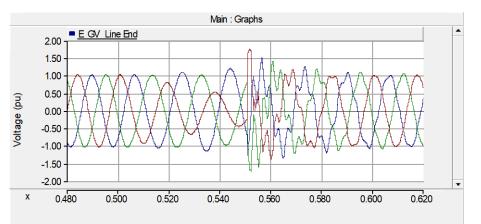
Protective Ratio (PR) = (Insulation withstand level/Voltage at protected equipment)


Example: PR = BIL/Lightning Protective Level (LPL)

Protective Margin (PM) = (PR - 1).100

Maximum system voltage	Coordinating current
(kV)	(kA)
48.3	5
72	5
121	10
145	10
169	10
242	10
362	10
550	15
800	20




Provided by manufacturers as a data sheet item;

- kJ/kV (of arrester MCOV)
- kJ/kV (of arrester rating)

Arrester Energy = $(V^*I)^*$ (duration of transient)

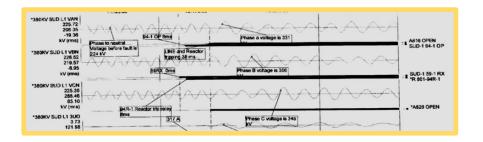
 How fast the transient gets damped out will determine (mainly) the energy dissipation of arrester

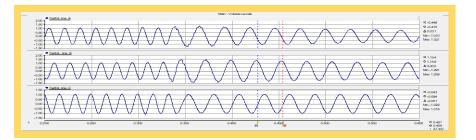
pscad.com

Powered by Manitoba Hydro International Ltd

Model Validation

Active Power Flow

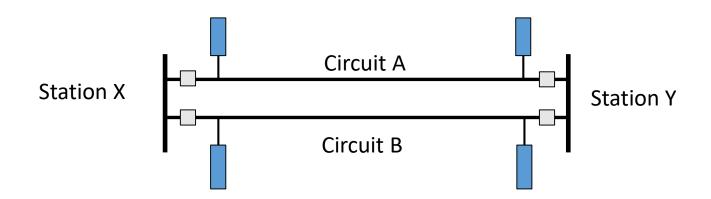

PSCAD


Bus number	PSCAD (MW)	PSSE (MW)
19001-19008	625	686
19001-19009	399	379
19001-19012	324	325
19001-19024	103	121
19001-19062	757	837
19001- 18073&18003	434	436
19012-18088	647	650
19024-19008	405	409
19024-19061	210	203
19024-11924	237	238

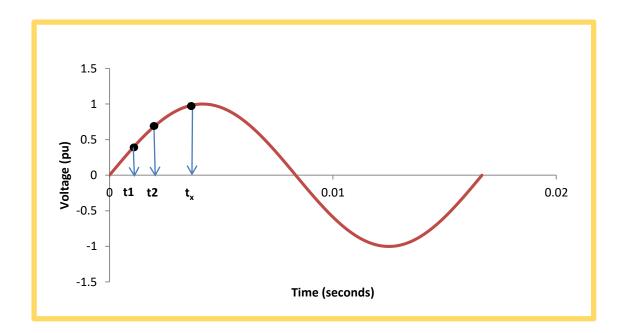
Fault Level

Load Bus	PSCAD (kA)	PSSE (kA)
19001	47.7	46.9
19012	33.4	33.2
19024	48.0	46.9

Comparison with Field Data

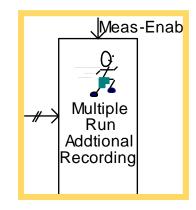


Simulation setup


- Point on wave impact 100 points over a cycle
- Trapped charge on lines
- Network topology (credible scenarios)

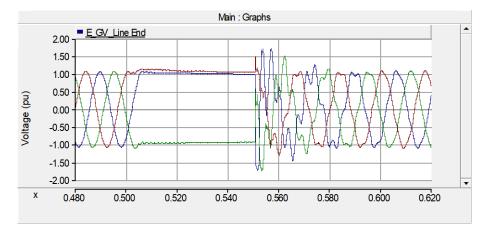
Point on Wave impact

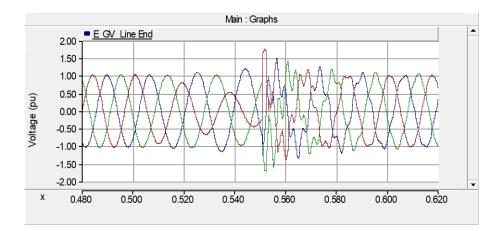

- Switching at different points over a 60 Hz cycle
 - ➤ 100 points over a cycle ⇒ 100 simulations
 - Breaker Pole Pre-Strike



Point on Wave impact

- Switching at 100 different points over a 60 Hz cycle
 - o Multiple Run component
 - o Multiple Run additional recording





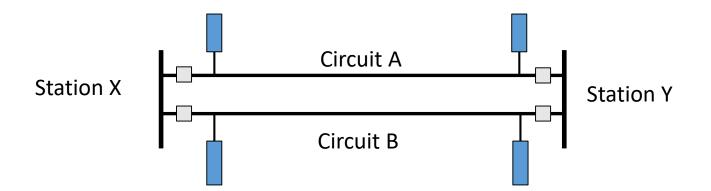
Study Considerations - SOV

Trapped Charge

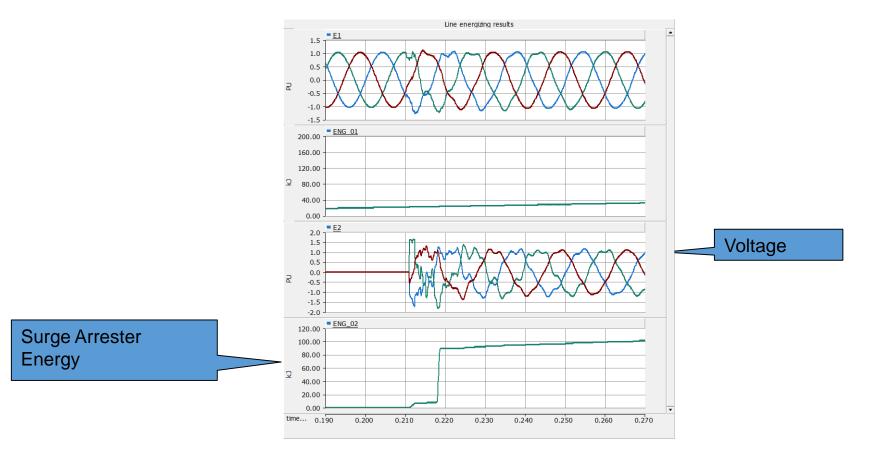
PSCAD

Simulation of trapped charge on transmission line

• Line reactor out of service


Simulation of trapped charge on transmission line

• Line reactor in service



Credible Scenarios

- 10 -20 different scenarios for each line
 - 100 point on wave simulations for each scenario
- Ex. 1) Reactors in service
 - 2) Reactors out of service
 - 3) Circuit B in service
 - 4) Circuit B out of service

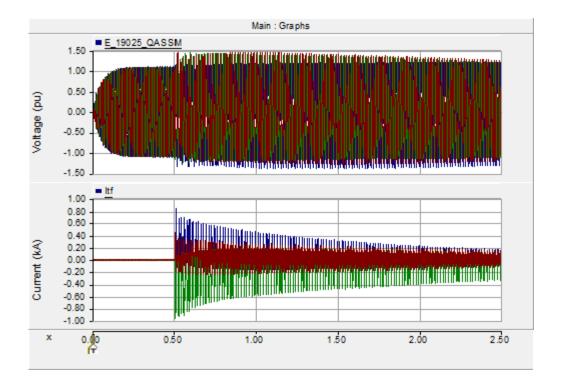
pscad.com Powered by Manitoba Hydro International Ltd.

Line switching results

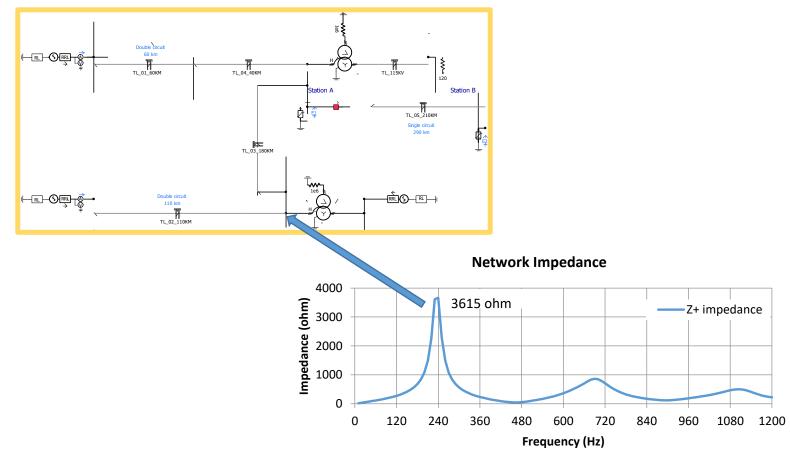
- E.g. Double circuit line
 - Circuit A energized from one end
 - Monitor voltages at two ends and at points along the line

		Voltage in kV					
	Closing Time	E_19011	E_31227	E_A1	E_A2	E_B1	E_B2
Minimum:	0.4	441.6869422	328.437343	441.687283	64 8.52885 08	41.0001304	53.75910884
Maximum:	0.4166	486.3028315	333.013673	486.303169	667.127313	78.50546719	84.10483459
Mean:	0.4083	469.2023583	330.033559	469.202736	656.3111978	64.56812464	73.44458982
Std Dev:	4.86E-03	12.5280621	1.01570766	12.5280421	5.347866178	12.1054595	8.943241286
2% Level:	0.398310918	443.472864	327.94755	443.473283	645.3280233	39.70655001	55.0774175
98% Level:	0.418289082	494.9318526	332.119567	494.932189	667.2943723	89.42969926	91.81176214

TOV - Harmonic Resonance following Transformer Energizing

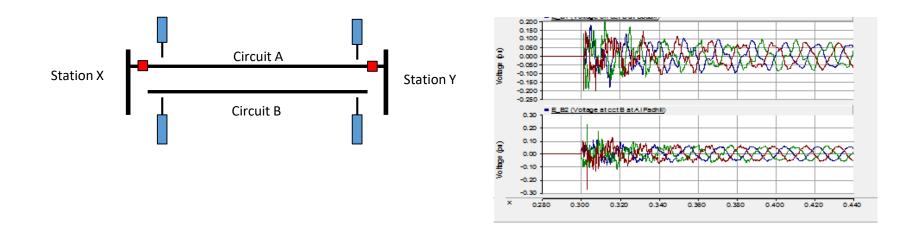


- Ferranti effect (Open end line voltage)
- Single line to ground faults
- Load rejection
- Transformer energizing
- Parallel line resonance

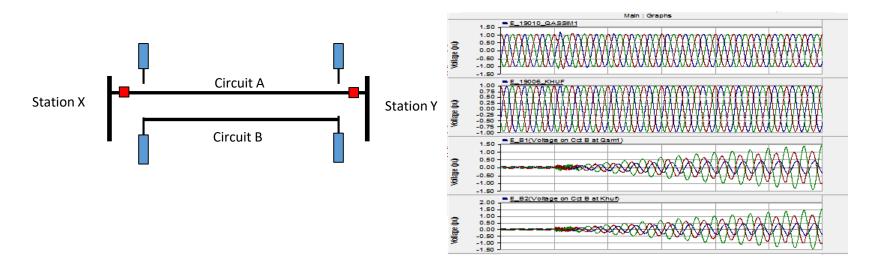


Transformer energizing

- Transformer inrush/magnetizing current contains low order harmonics
- Network frequency scan Parallel resonant points of network

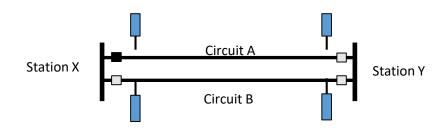

Parallel Line Resonance

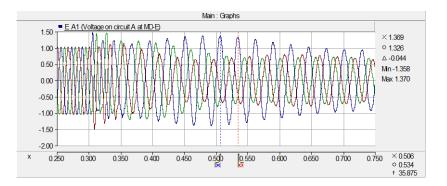
Induced voltage on an open transmission line

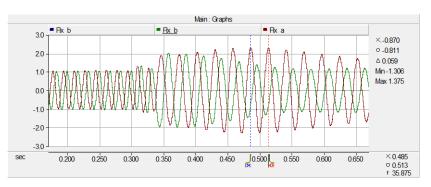

- Induced voltage on a de-energized line due to coupling between an energized parallel line on the same right of way
- De-energized line may be connected/ not connected to line reactors

Induced voltage in transmission line

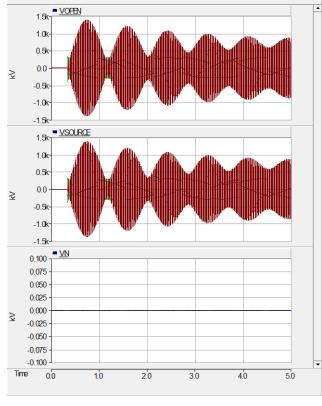
- Induced voltage on a de-energized line due to coupling between an energized parallel line on the same right of way
- De-energized line is connected to line reactors
- Induced voltage due to coupled resonance can be above 1 pu




TOV – Open Line Resonance


Open line resonance

PSCAD


- Transmission line with line reactors
- Resonance results when line is tripped from both ends with reactors connected
 - Reactor/current transformer over fluxing issues
 - Avoid this condition through proper operational practices.
 - Low frequency oscillations

Breaker Stuck Pole Conditions

PSCAD

Without NGR

VOPEN . 500 400 300 200 100 0 -100 --200 --300 -≩ -400 --500 --600 -- <u>VSOLRCE</u> 400 300 200 100 0 ≳ -100 -200 -300 -400 <u>VN</u> 60 40 -20 0 ≳ -20 -40 -60 -Time 0.20 0.80 1.60 1.80 2.00 0.40 0.60 1.00 1.20 1.40

With properly sized NGR

- Transformer energizing
 - Voltage dips
 - o Sympathetic inrush conditions
 - o Harmonic resonance conditions
- Transmission line energizing
 - Impact of POW
 - Trapped charge
 - o Line reactors
- Coupled line resonance conditions (over fluxing concerns)
 - Induced voltage
 - o Open line resonance
- Cable energizing
 - o Current zero miss condition
- Capacitor switching