

MANITOBA HVDC RESEARCH CENTRE, a Division of Manitoba Hydro International Ltd.

Machine Modeling and Power System Study Applications

November 02, 2017

Presented by: Dharshana Muthumuni

Outline - Machine Modeling and Applications

- Mathematical representation of machine windings and rotor dynamics
- Machine models and controls models available in PSCAD
- Setting up a PSCAD simulation case
 - Synchronous machine (initialization of machine and control models)
 - Induction machine (starting example)
- Illustration of Simulation examples
 - Synchronous machine under black start conditions
 - Voltage flicker due to compressor load driven by a synchronous machine
 - Sub synchronous resonance and torsional interactions
 - Voltage dips due to induction motor starting and mitigation options
 - Applications in wind generation (DFIG)
 - Synchronous condenser application to improve wind farm FRT performance
 - PM machine in wind generation
- Internal faults simulation other enhancements to standard models

Machine windings and the mathematical representation

© Manitoba HVDC Research Centre | a division of Manitoba Hydro International

Machine windings and the mathematical representation

Figure 2.1: Representation of the machine coils and the direction of their magnetic axes

[v] = [R][i] + d / dt[L][i] $L_{A} = L_{1} + L_{2} + L_{3} \cos (2\theta)$ $M_{AF} = f(\theta)$

Machine Models in PSCAD

Synchronous Machine

Induction Machine

Permanent Magnet Machine

Machine control models

Exciter models

Governor/Turbine models

PSS models

Non standard generator control systems

Simulation setup – Synchronous machine

Parameter		Thermal units typical values
Sator leakage Inductance	XI	0.1-0.2
Synchronous reactances	X _d	1.0-2.3
	Xq	1.0-2.3
Transient Reactance	X' _d	0.15-0.4
	X'q	0.3-1.0
Subtransient Reactance	X" _d	0.12-0.25
	X"q	0.12-0.25
Transinet OC time constant	T' _{do}	3.0-10.0 s
	T' _{qo}	0.5-2.0 s
Subtransient OC Time constant	T" _{do}	0.02-0.05 s
	T" _{qo}	0.02-0.05 s

S RRI-

ł

Simulation setup – Synchronous machine

Technical note available on how to set up the machine model and controls

Simulation setup – Induction machine

Technical note available on how to set up the machine model and controls

Simulation examples

© Manitoba HVDC Research Centre | a division of Manitoba Hydro International

Simulation examples

- Illustration of Simulation examples
 - Synchronous machine under black start conditions
 - Voltage flicker due to compressor load driven by a synchronous machine
 - Sub synchronous resonance and torsional interactions
 - Voltage dips due to induction motor starting and mitigation options
 - Applications in wind generation (DFIG)
 - Synchronous condenser application to improve wind farm FRT performance
 - PM machine in wind generation
- Internal faults simulation other enhancements to standard models

Example: Flicker due to a synchronous motor driven compressor

Compressor load torque characteristics

Voltage flicker measured at transmission level

	ninnin den Artester	
Addinanta (M Antonio (M Antonio (M Antonio	Manu Manuara <u>Alan Ang</u> alan Manun Manusa	andra and the second

Example: SSTI studies - Mechanical shaft-mass system

- Rotor of a Turbine Generator is a complex system of masses connected by shaft sections
- The total length can be as much as 50 m.
 - A single lumped inertia representation is typically considered in system transient stability studies
 - Assumption: Rigid shafts

Mechanical shaft-mass system

- Torsional Interaction studies require a more detailed representation of the shaft (compared to lumped mass representation)
 - A Multi-Mass representation
 - Main rotor components represented as separate (rigid) masses
 - The masses are connected to each other with 'elastic' shaft sections

Thank you

© Manitoba HVDC Research Centre | a division of Manitoba Hydro International